

4 **Research Article**5
6 **Self-medication Practices in Bangladesh: A Comparative**
7 **Cross-Sectional Study Between Urban and Rural**
8 **Communities**9
10 **Abstract**11
12
13 Self-medication (SM) is widely practiced in Bangladesh and constitutes a growing public health concern due to
14 inappropriate medicine use and limited regulatory enforcement. Of particular concern is the misuse of prescription
15 only medicines, including antibiotics, driven by decisions made without consultation from qualified healthcare
16 practitioners. Evidence comparing determinants of self-medication between urban and rural populations remains
17 limited. This study evaluated the prevalence and determinants of self-medication practices in Bangladesh, with a
18 specific focus on decision making influenced by unqualified pharmacy dispensers and the misuse of antibiotics
19 without professional supervision. A community based cross-sectional survey was conducted using a structured
20 questionnaire administered through face-to-face interviews. A total of 530 respondents from urban and rural
21 communities were included. Data were analyzed descriptively to assess sociodemographic characteristics,
22 frequency of self-medication, sources of treatment decisions, indications for medicine use, and categories of drugs
23 obtained without prescription. *Self-medication, defined as the use of medicines without consultation with a*
24 *registered physician within the preceding six months, was commonly reported, with most respondents indicating*
25 *weekly or monthly practice.* Decision making was largely influenced by advice from retail or community pharmacy
26 dispensers who were not licensed medical practitioners, followed by reuse of old prescriptions and personal
27 experience with similar illnesses. Higher educational attainment did not prevent self-medication and was associated
28 with greater confidence in self-directed treatment decisions. Pain related conditions, febrile illness, and
29 gastrointestinal complaints were the most common indications. A substantial proportion of respondents reported
30 using prescription only medicines, including antibiotics, without physician consultation. Antibiotic misuse was
31 significantly higher among rural respondents (68%) compared to urban respondents (32%), reflecting limited
32 access to qualified healthcare providers and greater reliance on nonprofessional dispensers in rural communities.
33 Self-medication in Bangladesh is driven primarily by nonprofessional treatment advice and inappropriate access to
34 prescription medicines, including antibiotics. These practices pose significant risks for antimicrobial resistance and
35 unsafe drug use. Strengthening regulation of pharmacy dispensing, restricting nonprescription antibiotic sales, and
36 implementing targeted public health education are critical to promoting rational medicine use.37
38
39
40 **Keywords:** Self-medication practices; Antibiotic misuse; Prescription-only medicines; Retail pharmacy
41 dispensing; Urban rural comparison; Rational use of medicines; Bangladesh

45 Introduction

46 In recent years there has been an increasing trend in self-medication practice in both developed and developing
47 countries (Ali *et al.*; 2012). Self-medication refers to the practice in which individuals select and use medicines to
48 manage self-recognized symptoms or illnesses without consulting a qualified healthcare professional, including the
49 intermittent or continued use of previously prescribed medicines without current medical supervision (WHO, 2000;
50 Awad *et al.*; 2005; Zheng *et al.*, 2023). Self-medication (SM) is a widespread and increasing practice worldwide
51 and is considered a public health concern because it can lead to antibiotic resistance, harmful side effects, drug
52 interactions, and delayed diagnosis of diseases (Baracaldo-Santamaría *et al.*, 2022). Recent evidence from a
53 systematic review and meta-analysis indicates that antibiotic self-medication remains highly prevalent worldwide,
54 with an estimated pooled prevalence of approximately 43%. Marked differences across regions and considerable
55 variability among studies further underscore the global and widespread misuse of antibiotics (Gashaw *et al.*, 2025).
56 The rational use of medicines means that patients receive medications that are appropriate for their clinical needs,
57 in doses that meet their individual requirements, for an adequate period of time, and at the lowest possible cost to
58 them and the community. When medicines are not used rationally, they may be prescribed, dispensed, or sold
59 inappropriately, leading to poor treatment outcomes, adverse drug reactions, antimicrobial resistance, and
60 unnecessary healthcare costs. The World Health Organization has highlighted that irrational medicine use remains
61 a significant global health problem, particularly in low and middle income countries, and includes inappropriate
62 self-medication with prescription only medicines (WHO, 2025). An emerging issue highlighted in recent literature
63 is the increasing tendency of individuals to self-medicate for chronic health conditions, including hypertension,
64 diabetes, and mental health disorders. Unlike the short-term management of minor symptoms, unsupervised use of
65 medicines for long-term conditions carries a higher risk of inadequate disease control, adverse drug effects, and
66 delayed recognition of complications. Evidence suggests that the continued reuse of previously prescribed
67 medications for chronic illnesses is becoming more common, particularly in settings where access to regular
68 medical follow-up is limited (Saha *et al.*, 2023). At the global public health level, self-medication is increasingly
69 recognized as a significant contributor to the antimicrobial resistance (AMR) problem. International health
70 authorities and recent evidence syntheses have repeatedly highlighted the widespread use of antibiotics without
71 prescription, particularly at the community level, as a major factor accelerating resistance. The continued
72 prevalence of this behavior suggests that awareness-raising efforts alone are inadequate unless accompanied by
73 stronger regulatory controls and improved access to appropriate healthcare services (WHO, 2025; Gashaw *et al.*,
74 2025). Recent regional evidence indicates that differences between urban and rural settings play an important role
75 in shaping self-medication practices. Individuals living in rural areas tend to depend more on self-medication
76 because of constrained healthcare facilities, transportation difficulties, and the greater time and financial burden
77 associated with seeking professional medical care. In contrast, urban residents often have easier access to a wide
78 range of drug outlets, which may increase exposure to a greater variety of medicines and raise the risk of
79 polypharmacy. Despite these distinct patterns, systematic investigation of urban rural differences in self-medication
80 within Bangladesh remains limited (Osei-Tutu *et al.*, 2024). In addition, the rapid expansion of digital health
81 resources and loosely regulated online medicine vendors has further intensified self-medication practices by
82 enabling direct access to drug-related information and products. Such autonomous medicine use frequently occurs
83 without appropriate diagnostic evaluation, thereby increasing the likelihood of inadequate management of chronic
84 health conditions. Strengthening regulatory oversight alongside targeted public education initiatives is therefore
85 essential to promote patient safety and rational use of medicines (Mackey *et al.*, 2016; Limbu *et al.*, 2023).
86 Furthermore, the role of non-professional medicine sellers and informal advisors remains underexplored in many
87 settings, despite their significant influence on treatment decisions. Understanding these dynamics is essential for
88 designing effective interventions aimed at promoting rational medicine use. The influence of pharmacies and easy
89 access to medicines has been linked with higher self-medication practices in community settings (Chautrakarn *et*
90 *al.*, 2021). In Bangladesh, perceived convenience and medication knowledge have shown significant associations
91 with self-medication behavior among university populations (Tohan *et al.*, 2024). Table 1 summarizes commonly
92 used prescription medicines involved in self-medication practices and highlights their intended therapeutic use
93 along with associated safety concerns. The table illustrates that a wide range of drug classes including antibiotics,
94 analgesics, acid-suppressing agents, and medications for chronic and acute conditions are frequently used without
95 professional supervision, underscoring the potential public health risks associated with inappropriate self-
96 medication.
97

Table 1. Common prescription medicines used for self-medication and associated safety concerns.

Self-medication Category	Common Examples	Intended Use	Potential Concern	Reference
Antibiotics	Amoxicillin, Azithromycin	Infections	Antimicrobial resistance	(Shah <i>et al.</i> , 2014)
NSAIDs	Diclofenac, Naproxen	Inflammation, pain	GI bleeding, cardiovascular risk	(Krasniqi <i>et al.</i> , 2024)
Cough & Common Cold Medicines	Codeine containing syrups, antihistamine & decongestant combinations	Cold, flu symptoms	Sedation, dependence	(Tian <i>et al.</i> , 2025)
Vitamins & Minerals	Vitamin D (high dose), Iron, Zinc	Immunity, fatigue	Toxicity, organ damage	(Badr <i>et al.</i> , 2022)
Acid-Suppressing Drugs	Pantoprazole	Acidity, GERD	Nutrient malabsorption, rebound acidity	(Häcker & Morck, 2012)
Antihistamines	Cetirizine, Loratadine	Allergy relief	Drowsiness, masking disease	(Idris <i>et al.</i> , 2016)
Weight-Loss Drugs	Orlistat, Metformin	Weight management	GI effects, metabolic risk	(Abdalfattah <i>et al.</i> , 2025)
Antidiarrheal / Antimicrobials	Metronidazole	Diarrhea	Masking infection, resistance	(Saha <i>et al.</i> , 2023)
Prescription Analgesics	Tramadol	Moderate to severe pain	Dependence, organ toxicity	(Osei-Tutu <i>et al.</i> , 2024)
Emergency Contraceptives	Ulipristal acetate	Unplanned pregnancy	Hormonal imbalance	(Barbian <i>et al.</i> , 2021)
Ophthalmic Drops	Steroid antibiotic combinations	Eye infection	Glaucoma, resistance	(Alamer <i>et al.</i> , 2023)

101 While self-medication has been widely studied globally, limited research compares self-medication practices
 102 between urban and rural populations in Bangladesh. Despite extensive research on self-medication, nationally
 103 comparative evidence examining urban rural differences in Bangladesh remains scarce. Existing studies primarily
 104 focus on specific cities or diseases, lacking a comprehensive evaluation of the socio-demographic factors and drug
 105 types involved in self-medication across different regions. The aim of this study is to compare self-medication
 106 practices between urban and rural populations in Bangladesh, focusing on prevalence, patterns, and socio-
 107 demographic influences. The objectives of this study were to assess the prevalence of self-medication among the
 108 general population in Bangladesh, to compare self-medication practices between urban and rural areas, to identify
 109 the common medicines and health conditions associated with self-medication, to examine the sources of
 110 information influencing self-medication behavior, and to evaluate the role of socio-demographic factors in shaping
 111 self-medication practices.

112 Materials and Methods

113 3.1 Study Design, Setting, and Population

114 This study was designed as a survey-based cross-sectional study to evaluate self-medication practices among the
 115 general population of Bangladesh. A total of 530 respondents, including both male and female participants from
 116 various age groups, were enrolled in the study. Data collection was conducted over a one-year period from
 117 November 2014 to October 2015. Participants were recruited from community settings without restriction to
 118 occupation, education level, or socioeconomic status. Participation was entirely voluntary, and all respondents
 119 were informed about the purpose and objectives of the survey prior to inclusion. The study was carried out across
 120 15 districts representing diverse geographic and sociodemographic backgrounds, including Dhaka, Chattogram,
 121

122 Madaripur, Munshiganj, Narayanganj, Faridpur, Shariatpur, Patuakhali, Comilla, Noakhali, Barisal, Khulna,
123 Rajshahi, Rangpur, and Sylhet. Selection of these locations considered population diversity, accessibility, and time
124 feasibility. Participants were recruited using a non-probability convenience sampling approach, which was adopted
125 due to logistical constraints. Recruitment was conducted in community settings, including residential
126 neighbourhoods, local marketplaces, and areas surrounding retail pharmacies within the selected districts. The
127 sampling frame consisted of adult community residents present in the selected locations during the data collection
128 period. Inclusion criteria were individuals aged 15 years and above who resided in the selected urban or rural areas
129 and were willing to participate. Exclusion criteria included individuals unwilling to provide consent or unable to
130 complete the interview due to illness or communication difficulties. Participants were approached directly by
131 trained data collectors using a face-to-face interview method. The study purpose was explained prior to
132 participation, and verbal informed consent was obtained. Refusal to participate was low, and no personal identifiers
133 were recorded. To reduce potential selection bias, data collection was conducted across multiple districts, on
134 different days and times, and included both urban and rural settings to capture a diverse range of sociodemographic
135 characteristics.

136 137 **3.2 Data Collection Instrument and Procedure**

138 Data were collected using a structured questionnaire designed to obtain information on sociodemographic
139 characteristics, patterns of self-medication, indications for self-medication, sources of information, and types of
140 medicines used. The questionnaire was reviewed for clarity and consistency prior to data collection. In this study,
141 self-medication was defined as the use of any medicine, including prescription-only medicines, without
142 consultation with a qualified medical practitioner. This included direct purchase of medicines from retail
143 pharmacies without a prescription, reuse of previously prescribed medicines without current medical advice, and
144 medicine use based on personal experience or advice from nonprofessional sources. In this study, the term misuse
145 was defined as the use of any prescription-only medicine without consultation with a registered physician. This
146 includes antibiotics and other prescription-only drug categories. Antibiotics were analyzed as a key subgroup due
147 to their public health importance. The assessment of misuse was limited to non-prescription access and
148 unsupervised use and did not include evaluation of dosing accuracy, treatment duration, or clinical appropriateness
149 of indication. Self-medication practice was assessed by asking participants the following question: "Have you used
150 any medicine without consulting a registered physician in the past six months?" Respondents who answered
151 affirmatively were further asked about the frequency of self-medication, which was categorized as weekly,
152 monthly, or occasional use. The six-month recall period was selected to balance recall accuracy with the need to
153 capture habitual self-medication behaviour. Participants were approached voluntarily, and the purpose of the study
154 was explained prior to administering the questionnaire. The study was conducted in accordance with ethical
155 principles for research involving human participants. Verbal informed consent was obtained from all respondents
156 before data collection. Participation was voluntary, and anonymity and confidentiality of participants' information
157 were strictly maintained throughout the study.

158 159 **3.3 Data Analysis**

160 All collected data were checked for completeness and consistency before analysis. Data were entered and analyzed
161 using Microsoft Excel (Microsoft Corp., USA). Descriptive statistics were used to summarize frequencies and
162 percentages. Chi-square (χ^2) tests were applied to examine associations between categorical variables, including
163 sociodemographic factors and self-medication practices. A p-value of less than 0.05 was considered statistically
164 significant.

165 166 **3.4 Ethical considerations**

167 This study was conducted as part of a master's dissertation under the Department of Pharmacy, East West
168 University, Bangladesh. At the time of data collection (2014-2015), formal institutional review board (IRB)
169 approval numbers were not routinely issued for non-interventional, community-based survey studies conducted as

173 academic theses at the departmental level during the study period. The study protocol, questionnaire, and informed
 174 consent procedures were reviewed at the departmental level under the supervision of the academic supervisor prior
 175 to data collection.

176
 177 The study was conducted in accordance with internationally accepted ethical principles for research involving
 178 human participants, including the Declaration of Helsinki. Participation was entirely voluntary, verbally informed
 179 consent was obtained from all respondents before data collection, and no personal identifiers were recorded.
 180 Anonymity and confidentiality of participant information were strictly maintained throughout the study.

181 Results

182 Distribution of Sociodemographic Characteristics of the Respondents

183
 184 The study population consisted of respondents of varying ages, gender, and residential backgrounds. Male
 185 participants predominated, and most respondents belonged to the economically active age group. A higher
 186 proportion of participants were married, and representation from both urban and rural areas was comparable.
 187 Overall, the sample reflected a diverse sociodemographic profile suitable for evaluating self-medication practices.
 188

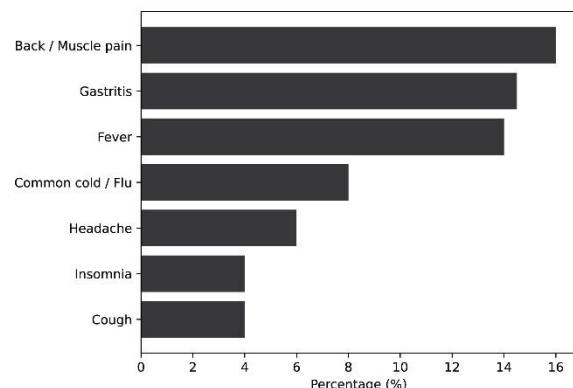
189 Table 2. Sociodemographic characteristics of respondents with chi-square analysis (n = 530)

Variable	Category	Frequency (n)	Percentage (%)	χ^2 value	p-value
Gender	Male	435	82.0	218.11	<0.001
	Female	95	18.0		
Place of Residence	Urban	281	53.0	1.93	0.165
	Rural	249	47.0		
Age Group (years)	15–30	276	52.0	238.75	<0.001
	31–60	244	46.0		
	>60	10	2.0		
Marital Status	Married	339	64.0	316.46	<0.001
	Unmarried	186	35.0		
	Widowed/Divorced	5	1.0		
Monthly Income (BDT)	0–5000	196	37.0	110.11	<0.001
	5001–15000	170	32.0		
	15001–30000	127	24.0		
Educational Status	>30000	37	7.0	128.82	<0.001
	Illiterate	117	22.0		
	Primary	32	6.0		
Occupation	Secondary	191	36.0	286.29	<0.001
	University	190	36.0		
	Employed	334	63.0		
Occupation	Unemployed	180	34.0		
	Retired	16	3.0		

190
 191 Chi-square tests were used to assess whether the observed distributions of sociodemographic variables differed
 192 significantly across categories.

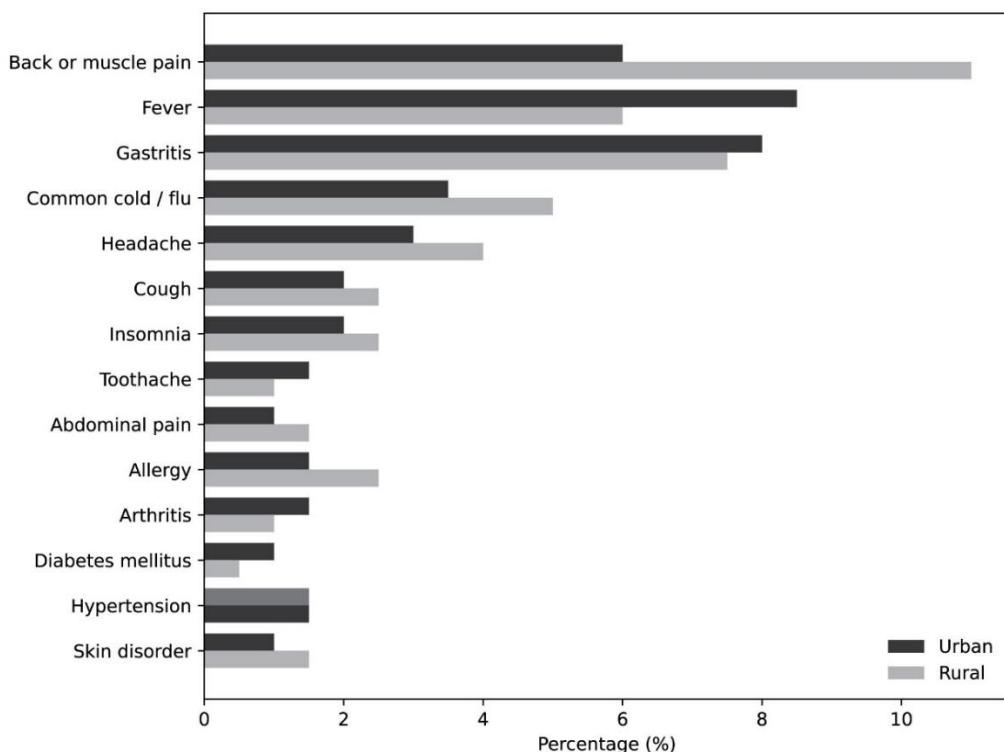
193
 194 Table 3. Prevalence and frequency of self-medication among respondents (n = 530)

Frequency of self-medication	Urban (n=281) n (%)	Rural (n=249) n (%)	Total (N=530) n (%)
Weekly	171 (60.9)	78 (31.3)	249 (47.0)
Monthly	95 (33.8)	138 (55.4)	233 (44.0)
≥ Once every 6 months	15 (5.3)	33 (13.3)	48 (9.0)
Total	281 (100.0)	249 (100.0)	530 (100.0)


Chi-square test for residence vs frequency: $\chi^2 = 47.66$, df = 2, p < 0.001.

195 Self-medication was common within the preceding six months. Weekly use was more prevalent among urban
 196 respondents, while monthly and \geq once every six months use was more frequent in rural areas (Table 3; $\chi^2 = 47.66$,
 197 $p < 0.001$).

199 Table 4. Framework of the self-medication Decision Process among Respondents


Step	Component	Key Contributor
Step 1	Frequency of practice	Regular use (weekly or monthly)
Step 2	Motivation for self-medication	Perceived minor or simple illness
Step 3	Information pathway	Retail pharmacy
Step 4	Reinforcing factor	Previous experience with similar conditions

200 The decision-making process underlying self-medication is summarized in Table 4. Self-medication was primarily
 201 driven by the perception of illness as minor and prior experience with similar conditions, with retail pharmacies
 202 serving as the main source of information. Previous prescriptions and advice from family or friends also influenced
 203 decisions, while formal sources such as drug information leaflets and mass media played a minimal role.

207 **Figure 1:** Major indications for self-medication among
 208 the study population. Back or muscle pain was the most
 209 frequently reported indication, followed by gastritis and
 210 fever, while conditions such as headache, insomnia, and
 211 cough were reported less frequently.

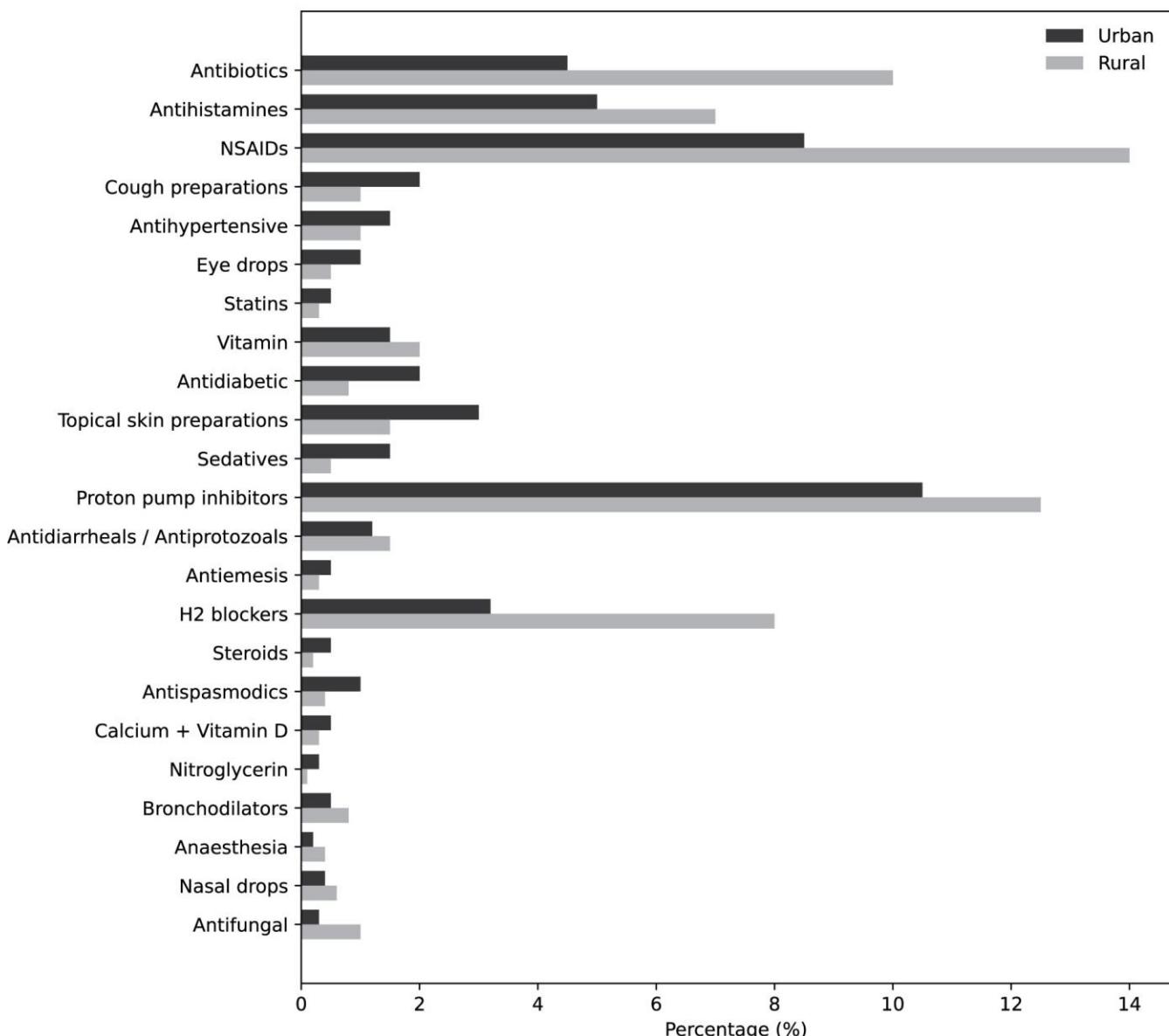
212
 213
 214
 215 The distribution of health conditions for which self-medication was practiced differed between urban and rural
 216 populations. To better understand these variations, the most frequently reported indications were analyzed
 217 comparatively. Figure 2 presents the leading indications for self-medication in urban and rural areas, highlighting
 218 differences in the pattern and prevalence of commonly reported conditions between the two settings.

220
 221 **Figure 2:** Comparative Indications for self-medication in Urban and Rural Areas (Top 14). The comparative
 222 analysis of indications for self-medication shows clear differences between urban and rural populations. Back or

223 muscle pain was the most common indication in rural areas, while fever and gastritis were more frequently
 224 reported in urban settings. Rural respondents showed higher self-medication practices for common cold, headache,
 225 insomnia, and allergy, whereas urban respondents demonstrated relatively greater use for fever, gastritis, and
 226 toothache. Overall, rural populations relied more on self-medication for pain-related and common illnesses, while
 227 urban populations showed higher use for gastrointestinal and febrile conditions.
 228

229 Table 5. Medicine Groups Used for Self-medication (n = 530)

Medicine group	Number of respondents (n)	Percentage (%)
Proton pump inhibitors	121	22.8
Non-steroidal anti-inflammatory drugs (NSAIDs)	119	22.5
Antibiotics	76	14.3
Cough preparations	67	12.6
Antihistamines	65	12.3
H2 blockers	29	5.5
Antacids	14	2.6
Vitamins	14	2.6
Topical skin preparations	14	2.6
Anti-diabetic drugs	12	2.3
Antihypertensive drugs	11	2.1
Eye drops	11	2.1
Antidiarrheals / antiprotozoal agents	11	2.1
Sedatives	6	1.1
Antiemetics	6	1.1
Steroids	5	0.9
Herbal preparations	4	0.8
Bronchodilators	2	0.4
Antispasmodics	2	0.4
Antifungal drugs	1	0.2


230
 231 Comparative analysis of medication use between urban and rural respondents demonstrates a consistently higher
 232 tendency toward self-medication among individuals residing in rural areas for most medicine groups. Antibiotic
 233 use was notably higher in the rural population compared to the urban population, indicating a greater reliance on
 234 antibiotics without prescription in rural settings. A similar pattern was observed for non-steroidal anti-
 235 inflammatory drugs (NSAIDs), where rural respondents showed higher usage than their urban counterparts. Proton
 236 pump inhibitors and H2 blockers were also more frequently used in rural areas, suggesting increased self-
 237 management of gastrointestinal symptoms among rural respondents. Antihistamines and cough preparations
 238 followed the same trend, with rural usage exceeding urban usage, reflecting a higher prevalence of self-treatment
 239 for allergic and respiratory conditions in rural communities.

240 In contrast, urban respondents showed relatively comparable or slightly higher use of certain medications such as
 241 eye drops, topical skin preparations, and vitamins; however, the overall differences remained modest. Less
 242 frequently used medication groups including antidiabetic drugs, antihypertensives, antispasmodics,
 243 bronchodilators, and antifungal agents were reported at low levels in both settings, though rural use remained
 244 marginally higher in most categories.

245 Overall, the findings indicate that rural populations exhibit a greater inclination toward self-medication across
 246 multiple therapeutic categories, particularly for antibiotics, NSAIDs, and acid-suppressing drugs, compared to
 247 urban populations. A higher proportion of antibiotic self-medication was observed among rural respondents than

248
249

urban respondents (68% vs. 32%), with chi-square analysis indicating a significant association between place of residence and antibiotic use ($p < 0.05$).

250
251
252
253
254
255
256

Figure 3: Comparative distribution of self-medicated drug categories in urban and rural populations. The percentage distribution of commonly self-medicated drug categories among urban and rural respondents. Higher use of antibiotics, NSAIDs, and proton pump inhibitors was observed in rural areas compared to urban areas. Urban respondents showed relatively lower but comparable use across most medication groups. The findings highlight notable rural and urban differences in self-medication practices, particularly for analgesics and gastrointestinal medications.

257

Discussion

258
259
260
261
262
263
264

Comparing results of this study with those of other studies conducted in other countries seems somewhat difficult due to differences in cultures, health care systems, and the roles of community pharmacies. This study found that male respondents practiced self-medication to a larger extent than females, which may partly reflect greater male availability in public and community settings where the survey was conducted, as well as men's more visible role in medicine purchasing from retail pharmacies. This result is consistent with the findings of another study (Jasim *et al.*, 2014) and contradicts other studies (Carrasco *et al.*, 2009; Chua *et al.*, 2011).

265
266

This study indicated that about 98% of the study population were 15-60 years old, which seems logical since individuals in this age group have a greater ability than older individuals to move and seek medications, due to

267 fewer incidences of joint or cardiovascular diseases compared to older people (Kaye *et al.*, 2010; Lakatta, 2002;
268 North *et al.*, 2012).

269
270 In this study, most respondents were married, which may be attributed to religious and traditional considerations
271 that encourage marriage at younger ages.

272
273 About two-thirds of the study population ranked their monthly income as less than good. This result is consistent
274 with other studies conducted in developing countries, which found that the majority of the population practicing
275 self-medication belonged to a low economic status group (Worku *et al.*, 2003).

276
277 This study demonstrated that about 71% of respondents were literate. This could be explained by the increasing
278 percentage of educated individuals in the general population.

279
280 The primary reason mentioned by 41% of respondents for practicing self-medication was the perception of having
281 a simple ailment that did not require physician consultation. This finding is consistent with another study, which
282 showed that patients' perception of their current conditions as simple illnesses was the dominant factor behind self-
283 medication practices (James *et al.*, 2008).

284
285 The second most common reason for practicing self-medication among nearly two-thirds of the study population
286 was prior experience and knowledge of treatment from similar previous ailments. This may be explained by
287 individuals' ability to remember medications, whether prescribed or over-the-counter (OTC), used for similar
288 previous conditions, especially when such medications were effective in improving symptoms (Widayati *et al.*,
289 2011).

290
291 The most important source of information for self-medication reported in this study was retail dispensers, who are
292 licensed to sell medicines but not to prescribe them.

293
294 The second most important source was previous prescriptions, which were reused without re-consultation. Friends
295 and family members who had suffered from similar conditions were also identified as important sources of
296 information. The study showed that some conditions treated through self-medication were minor and did not
297 require physician consultation; however, other conditions required medical supervision for appropriate evaluation
298 and treatment.

299
300 Pain (17%), fever (15%), and gastritis (15%) were the main indications for self-medication. However, some critical
301 conditions, such as diabetes mellitus and hypertension, were also treated through self-medication, which require
302 proper medical consultation and supervision.

303
304 Respondents used a wide range of drug classes for self-medication. Some of these drugs were available over the
305 counter and could be dispensed based on patient requests, while others were prescription only medications that
306 should be used under physician supervision. In the context of this study, misuse specifically denotes the use of
307 prescription only medicines without physician consultation and does not encompass incorrect dosing, treatment
308 duration, or clinical appropriateness of indication, which were not assessed. Approximately 14% of the study
309 population reported using antibiotics without prescription. Among antibiotic users, 32% were from urban areas,
310 whereas 68% were from rural areas. This higher use in rural areas may reflect limited access to healthcare facilities
311 and delayed physician consultation. Additionally, the use of sedatives (5%) and cough preparations (2%) raises
312 concerns regarding potential misuse. The self-medication use of antidiabetic (2%) and antihypertensive drugs
313 (3%), often sourced from retail dispensers or previous prescriptions, also poses significant health risks.

314 315 **Study Limitations**

316 This study has certain limitations. The data were self-reported and therefore subject to recall bias. The cross-
317 sectional design limits causal interpretation. Additionally, the study was conducted in selected districts, which may
318 limit the generalizability of the findings to the entire population of Bangladesh. The predominance of male
319 respondents may further limit generalizability, particularly with respect to self-medication practices among women,
320 and should be considered when interpreting the results. Although data were collected earlier, the findings remain
321 relevant due to persistent self-medication practices and ongoing regulatory challenges in Bangladesh.

Conclusion and Future Direction

This study demonstrates that self-medication is a widespread practice among the general population of Bangladesh, occurring in both urban and rural communities. The findings indicate that self-medication is most prevalent among individuals aged 15–60 years and is strongly influenced by perceptions of illness as minor, previous treatment experience, and advice obtained from retail pharmacy dispensers. Despite relatively high literacy levels among respondents, inappropriate self-medication practices persisted, including the use of prescription only medicines such as antibiotics, sedatives, antihypertensive, and antidiabetic drugs without professional consultation. A notable rural urban disparity was observed, with rural populations exhibiting higher reliance on antibiotics and other prescription medicines, likely reflecting limited access to qualified healthcare services and greater dependence on nonprofessional dispensers. The predominant use of analgesics, acid-suppressing drugs, and antibiotics raises significant public health concerns, particularly regarding antimicrobial resistance, drug misuse, and delayed diagnosis of chronic diseases. Overall, the findings highlight gaps in regulatory enforcement, public awareness, and pharmacy practice that contribute to unsafe medication behaviors.

Future efforts should focus on strengthening regulatory control over the dispensing of prescription-only medicines, particularly antibiotics, through stricter enforcement of existing drug laws and enhanced monitoring of retail pharmacy practices. Capacity building and formal training for retail pharmacy dispensers are essential to promote rational medicine use and appropriate referral to qualified healthcare professionals.

Public health education campaigns targeting both urban and rural populations should be implemented to improve awareness of the risks associated with inappropriate self-medication, especially for chronic and infectious diseases. Further research using longitudinal and intervention-based study designs is recommended to assess causal factors and evaluate the effectiveness of policy and educational interventions. Integrating pharmacists more effectively into primary healthcare services and expanding access to affordable medical consultation, particularly in rural areas, may play a critical role in reducing unsafe self-medication practices in Bangladesh.

List of Abbreviations

(List all the abbreviations appeared in your manuscript as given below)

SM: Self-medication, OTC: Over the Counter, NSAIDs: Non-Steroidal Anti-Inflammatory Drugs, PPI: Proton Pump Inhibitor, H2 blocker: Histamine 2 Receptor Antagonist, GERD: Gastroesophageal Reflux Disease, WHO: World Health Organization, BDT: Bangladeshi Taka, GI: Gastrointestinal

Conflicts of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author Contributions Statement (State the contributions of each author as given below)

Conceptualization: BMS conceptualized and designed the study. BMS, ZI, MNR, and FA were responsible for data collection, including prescription review and participant interviews. MKM, MR, and UA contributed to data organization and initial manuscript drafting. BMS conducted critical review, editing, and overall supervision of the manuscript. Final manuscript preparation and approval were carried out by BMS, ZI, MNR, and FA. NN provided project supervision and methodological guidance. All authors read and approved the final version of the manuscript.

Funding Information (mention the funding sources if you have received any financial support)

This research received no external funding.

Acknowledgements

The authors would like to express their sincere gratitude to all healthcare professionals, including medical doctors, pharmacists, nurses, and other healthcare workers, for their dedication and commitment in providing healthcare services despite professional challenges and psychological stress. The authors are also thankful to all study

380 participants for their voluntary participation and for providing valuable information and prescriptions that
381 contributed significantly to the completion of this study.

382 Data Availability Statement

383 Data relevant to the study is already included in the article or attached in the supplements. Raw data will be
384 provided upon reasonable request by contacting the corresponding author.

386 References (Follow this Vancouver/NCBI Reference style with DOI number as provided below)

388 Abdalfattah, Nouralhoda Ahmed, et al. "Knowledge and Practice about Non-Prescription Weight Loss
389 Supplements Utilization among University Students." *International Journal of Adolescent Medicine and*
390 *Health*, Sept. 2025. *PubMed*, <https://doi.org/10.1515/ijamh-2025-0124>.

391 Alamer, Sarah S., et al. "Ophthalmic Self-medication Practices and Associated Factors of Using Steroid Eye Drops
392 Among Adult Ophthalmic Patients." *Cureus*, vol. 15, no. 8, Aug. 2023, p. e43110. *PubMed*,
393 <https://doi.org/10.7759/cureus.43110>.

394 Ali, Abdul Nazer, et al. "Self-medication Practices among Health Care Professionals in a Private University,
395 Malaysia." *International Current Pharmaceutical Journal*, vol. 1, no. 10, Sept. 2012, pp. 302–10.
396 www.banglajol.info, <https://doi.org/10.3329/icpj.v1i10.11846>.

397 Awad, Abdelmoneim, et al. "Self-medication with Antibiotics and Antimalarials in the Community of Khartoum
398 State, Sudan." *Journal of Pharmacy & Pharmaceutical Sciences: A Publication of the Canadian Society for*
399 *Pharmaceutical Sciences, Societe Canadienne Des Sciences Pharmaceutiques*, vol. 8, no. 2, Aug. 2005, pp.
400 326–31. *PubMed*.

401 Badr AF, Alghamdi L, Baraidah H, Alsulami R. Prevalence and patterns of self-medication during COVID-19
402 pandemic amongst pharmacy students in Jeddah, Saudi Arabia: cross-sectional study. *Saudi J Clin Pharm.*
403 2022;1(4):112–117. doi:10.4103/sjcp.sjcp_6_22.

404 Baracaldo-Santamaría, Daniela, et al. "Definition of Self-medication: A Scoping Review." *Therapeutic Advances*
405 *in Drug Safety*, vol. 13, Oct. 2022, p. 20420986221127501. *PubMed Central*,
406 <https://doi.org/10.1177/20420986221127501>.

407 Barbán, Julia, et al. "Emergency Contraception in University Students: Prevalence of Use and Knowledge
408 Gaps." *Revista De Saude Publica*, vol. 55, 2021, p. 74. *PubMed*, <https://doi.org/10.11606/s1518-8787.2021055003076>.

409 Carrasco-Garrido, P., et al. "Patterns of Medication Use in the Immigrant Population Resident in Spain: Associated
410 Factors." *Pharmacoepidemiology and Drug Safety*, vol. 18, no. 8, Aug. 2009, pp. 743–50. *PubMed*,
411 <https://doi.org/10.1002/pds.1776>.

412 Chua SS, Sabki NH. Use of nonprescription medications by the general public in the Klang Valley. *J Appl Pharm
413 Sci.* 2011;1(09):93–98. Available from: https://www.japsonline.com/admin/php/uploads/268_pdf.pdf.

414 Gashaw, Tigist, et al. "The Global Prevalence of Antibiotic Self-medication among the Adult Population:
415 Systematic Review and Meta-Analysis." *Systematic Reviews*, vol. 14, no. 1, Feb. 2025, p. 49. Springer Link,
416 <https://doi.org/10.1186/s13643-025-02783-6>.

417 Häcker, Franziska, and Hartmut Morck. "Self-medication of Upper Gastrointestinal Symptoms with Hydrotalcite:
418 A Noninterventional Community Pharmacy Study on Drug Usage and Patient Satisfaction." *International
419 Journal of Clinical Pharmacology and Therapeutics*, vol. 50, no. 2, Feb. 2012, pp. 87–99. *PubMed*,
420 <https://doi.org/10.5414/cp201576>.

421 Idris T, Khanum S, Uddin MS, Asaduzzaman M, Islam MA, Nasrin F, Haider SS. Study on self-medication
422 practices among university students of Bangladesh. *J Adv Med Med Res.* 2016;14(6):1–8.
423 doi:10.9734/BJMMR/2016/24364.

424 James, H., et al. "Influence of Medical Training on Self-medication by Students." *International Journal of Clinical
425 Pharmacology and Therapeutics*, vol. 46, no. 1, Jan. 2008, pp. 23–29. *PubMed*,
426 <https://doi.org/10.5414/cpp46023>.

427 Jasim, Ali L., et al. "Self Medication Practice among Iraqi Patients in Baghdad City." *American Journal of
428 Pharmacological Sciences*, vol. 2, no. 1, Jan. 2014, pp. 18–23. *pubs.sciepub.com*,
429 <https://doi.org/10.12691/ajps-2-1-4>.

430 Kaye, Alan D., et al. "Pain Management in the Elderly Population: A Review." *Ochsner Journal*, vol. 10, no. 3,
431 2010, pp. 179–87. *PubMed*.

433 Krasniqi, Gentiana, et al. "Excessive Self-medication with Prescription NSAIDs: A Cross-Sectional Study in
434 Kosovo." *Pharmacy* (Basel, Switzerland), vol. 12, no. 3, June 2024, p. 93. PubMed,
435 <https://doi.org/10.3390/pharmacy12030093>.

436 Lakatta, Edward G. "Age-Associated Cardiovascular Changes in Health: Impact on Cardiovascular Disease in
437 Older Persons." *Heart Failure Reviews*, vol. 7, no. 1, Jan. 2002, pp. 29–49. Springer Link,
438 <https://doi.org/10.1023/A:1013797722156>.

439 Limbu, Yam B., and Bruce A. Huhmann. "Illicit Online Pharmacies: A Scoping Review." *International Journal of
440 Environmental Research and Public Health*, vol. 20, no. 9, May 2023, p. 5748. DOI.org (Crossref),
441 <https://doi.org/10.3390/ijerph20095748>.

442 Mackey, Tim K., and Gaurvika Nayyar. "Digital Danger: A Review of the Global Public Health, Patient Safety and
443 Cybersecurity Threats Posed by Illicit Online Pharmacies." *British Medical Bulletin*, vol. 118, no. 1, June
444 2016, pp. 110–26. DOI.org (Crossref), <https://doi.org/10.1093/bmb/ldw016>.

445 North, Brian J., and David A. Sinclair. "The Intersection between Aging and Cardiovascular Disease." *Circulation
446 Research*, vol. 110, no. 8, Apr. 2012, pp. 1097–108. PubMed,
447 <https://doi.org/10.1161/CIRCRESAHA.111.246876>.

448 Osei-Tutu, Solomon, et al. "Patterns and Social Factors Associated with Non-Prescription Use of Tramadol: A
449 Cross-Sectional Study among Youth in Urban Informal Settlements in Ghana." *Journal of Health, Population,
450 and Nutrition*, vol. 43, no. 1, Nov. 2024, p. 191. PubMed, <https://doi.org/10.1186/s41043-024-00688-z>.

451 Saha, Ayan, et al. "Prevalence and Determinants of Self-medication Practices among general Population: A Cross-
452 Sectional Study in Thimphu, Bhutan and Chattogram, Bangladesh." *Journal of Public Health Research*, vol.
453 12, no. 1, Jan. 2023, p. 22799036231152327. PubMed Central, <https://doi.org/10.1177/22799036231152327>.

454 Shah, Syed Jawad, et al. "Self-medication with Antibiotics among Non-Medical University Students of Karachi: A
455 Cross-Sectional Study." *BMC Pharmacology and Toxicology*, vol. 15, no. 1, Dec. 2014, p. 74. Springer Link,
456 <https://doi.org/10.1186/2050-6511-15-74>.

457 Tian, Yu-Shi, et al. "Status and Influencing Factors of OTC Medicine Use for Self-medication in Cold and Cough:
458 A Cross-Sectional Survey in Japan." *BMC Public Health*, vol. 25, no. 1, May 2025, p. 1918. PubMed,
459 <https://doi.org/10.1186/s12889-025-23113-4>.

460 Tohan, Mortuja Mahamud, et al. "Knowledge Attitude and Convenience on Self-medication Practices among
461 University Students in Bangladesh Exploration Using Structural Equation Modeling Approach." *Scientific
462 Reports*, vol. 14, no. 1, May 2024, p. 10837. www.nature.com, <https://doi.org/10.1038/s41598-024-60931-9>.

463 Widayati, Aris, et al. "Self Medication with Antibiotics in Yogyakarta City Indonesia: A Cross Sectional
464 Population-Based Survey." *BMC Research Notes*, vol. 4, Nov. 2011, p. 491. PubMed,
465 <https://doi.org/10.1186/1756-0500-4-491>.

466 Worku, Solomon, and Abebe G/Mariam. "Practice of Self-medication in Jimma Town." *The Ethiopian Journal of
467 Health Development*, vol. 17, no. 2, 2003. ejol.aau.edu.et,
468 <https://ejol.aau.edu.et/index.php/EJHD/article/view/2300>.

469 World Health Organization. *Antimicrobial Resistance*. <https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance>. Accessed 18 Dec. 2025.

470 World Health Organization. *Guidelines for the regulatory assessment of medicinal products for use in self-medication*. Geneva: World Health Organization; 2000. Available from: <https://iris.who.int/server/api/core/bitstreams/452f183c-812d-4f3a-a841-6910268cf785/content>.

471 World Health Organization. *Promoting Rational Use of Medicines*. <https://www.who.int/activities/promoting-rational-use-of-medicines>. Accessed 18 Dec. 2025.

472 Zheng, Yu, et al. "A Systematic Review of Self-medication Practice during the COVID-19 Pandemic: Implications
473 for Pharmacy Practice in Supporting Public Health Measures." *Frontiers in Public Health*, vol. 11, 2023, p.
474 1184882. PubMed, <https://doi.org/10.3389/fpubh.2023.1184882>.